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Abstract

The influence of preannealing treatments on the polymorphic crystallization of lithium disilicate glasses is examined. As

expected, glasses heated at different rates through the temperature range where there is significant nucleation develop widely

different numbers of nuclei. This can dramatically influence the stability and transformation characteristics of the annealed

glass. Non-isothermal diflerential scanning calorinletry (DSC) and differential thermal analysis (DTA) measurements are

demonstrated to be useful to probe the nucleation behavior. The first systematic investigations of particle size effects on the

non-isothermal transfl)rmation behavior are presented and discussed. Based on DTA and microscopy experiments, we show

that small particles of lithium disilicate glasses crystallize primarily by surface crystallization. The relative importance of

surface versus volume crystallization is examined by varying panicle size, by introducing nucleating agents and by exposing

glasses to atmospheres of different water content. These data are analyzed quantitatively using a numerical model developed

in a second paper following in this volume.

1. Introduction

A detailed knowledge of the temperature depen-

dence of nucleation and growth is essential for mate-

rials design, since these processes control the phases

and microstructures tbrmed. Experimental investiga-

tions to obtain kinetic parameters, however, are labo-

rious and time consuming, particularly tot the evalu-

ation of the nucleation rates, Differential scanning

calorimetry (DSC) and differential thermal analysis

(DTA) are useful techniques for studying the kinetics

+ Corresponding author. Tel.: + 1-314 935 6228; fax: + 1-314

935 6219: e-mail: klk@wuphys.wusll.edu,

of first order phase transformations. When coupled

with microscopic studies of the transformation mi-

crostructure+ isothermal DSC and DTA studies can

provide information about the mode and kinetics of

transformation [1]. Using independent measurements

of the growth velocity, it is even possible in some

cases to extract kinetic information about the

steady-state and time-dependent nucleation rates [2].

Non-isothermal calorimetric techniques, which

sample the transformation kinetics over a range of

temperatures in a single measurement, offer several

advantages over isothermal methods. Studies can be

made more easily in less time, smaller quantities of

sample are generally required and the kinetics of

transformation can be probed over a different, typi-

"_ :_ 3(}0..-_ 09./96/$15.00 Cop)right _g' 1996 Elsevier Science B.V. All ri_zhts reserved.
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tally higher, temperature range. Also, automation of
non-isothermal data collection should be easier, al-

lowing such measurements to be readily made at

remote locations, such as in a microgravity environ-
sent. Non-isothermal methods, however, suffer from

the lack of quantitative methods of analysis. Existing

methods are based on erroneous assumptions for the

temperature dependence of the effective rate con-

stants, generally resulting in misinformation about
the transformations [3-5].

Here, we present results obtained from non-iso-

thermal DTA studies of lithium disilicate glass, which
is known to crystallize polymorphically by homoge-

neous nucleation. A method for probing the tempera-

ture range for significant nucleation is presented and

critiqued. Most methods for the analysis of calori-

metric data assume infinitely large samples, while

DTA and DSC samples generally consist of small
particles. By studying ensembles of particles of dif-

ferent sizes and by deliberately introducing nucleat-

ing agents to enhance the internal nucleation rate,

several effects due to finite particle size are demon-

strated, including an increased importance of surface

crystallization. All experimental data are analyzed
qualitatively here. In a companion paper [6], we will

develop a realistic numerical model and use that

model to analyze these data more quantitatively. The

results from that analysis support the general conclu-

sions presented here.

2. Experimental procedure

Li,O. 2SiO_ (LS2) glass was prepared by melt-

ing a well-mixed 50 g batch of the appropriate

composition in a platinum crucible at 1475°C for 3 h

in air. and subsequently casting the melt between

two steel plates. Before casting, the melt was stirred
periodically (30 to 40 min interval) with a silica rod

to ensure homogenization of the glass. X-ray diffrac-

tion (XRD) and examination by scanning electron

microscopy (SEM) showed no evidence of unmelted

or crystalline particles in the as-quenched glass. The

silica content in the glass was determined using
energy dispersive X-ray analysis (EDAX). The inten-

sity (in counts/s) of the Si peak in the glass was

compared with that determined from a silica stan-

dard. using identical beam currents and scan areas.

Based on t2 different locations, each _ 100 Ixm ×

100 ixm, the average silica content of the glass was

within 1.5 wt% of that in the batch. The quenched

glass was ground and screened to five different

particle diameters, 25-45, 75-106, 180-300. 425-

500 and 850-1190 IJ,m. These five different ranges

are designated by the approximate average size in

each range: 35, 90, 240, 462 and 1020 ixm. The
powdered glasses were stored in a vacuum desiccator

until used for differential thermal analysis (DTA)
measurements.

Nucleation and growth of the crystal phase in the

glass powders were investigated using a Perkin-

Elmer DTA-1700 equipped with a computer inter-

face for storing and analyzing the thermal data. All

measurements were made on approximately 40 mg
samples using platinum containers for both glass and

reference (alumina) samples. Some DSC measure-

ments were made using a Perkin-Elmer DSC-7 with

stainless steel sample pans. Both the DTA and the

DSC were calibrated prior to and periodically during

the measurements for all the heating rates used in the
present investigation, using ln, Zn and AI standards.

Nitrogen with a flow rate of 50 cm3/min was used

in the DTA measurements, while argon flowing at 30
cm3/min was used in the DSC.

The crystal nucleation rate in LS2 glass is signifi-
cant only between 425°C and 500°C [7,8]. Non-iso-

thermal DTA studies of the effects of heating at
different rates through this nucleation zone were

made using the 462 Ixm average diameter glass

particles. The LS2 glass was first heated at a high

heating rate (~ 80°C/min) from room temperature

to 400°C. After stabilizing at 400°C for approxi-

mately 5 sin, the glasses were heated at different

heating rates (q5n = 0.5, 1, 2, 4, 6, 10 and 15°C/sin)

to 500°C, and subsequently heated at 15°C/min (the

crystallization heating rate, @_) until the crystalliza-
tion was complete. To explore the effects of the

crystallization heating rate, these measurements were

repeated for _. = 2, 4, 6, 10 and 15°C/min.

The effects of particle size on the crystallization

kinetics of the LS2 glass were investigated by heat-
ing as-quenched glass panicles of different sizes

(detailed above) in the DTA at 15°C/min from room

temperature until the completion of crystallization.

No pre-nucleation treatments were used for this in-

vestigation. As will be demonstrated, this provides
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information on the mechanism of crystallization

(surface and/or internal). To investigate possible

changes in the crystallization with the introduction of

heterogeneous nuclei, similar measurements were re-

peated for different particles of the LS2 glass con-

taining 0.001 and 0.005 wt% platinum. The platinum

was introduced into the glass by adding a PtCI 4

solution to the original glass batch. This was then

melted and quenched in the same manner as for the
undoped LS2 glass.

To further elucidate the relative roles of surface

versus volume crystallization, samples made from

three different particle sizes of the as-quenched LS2

glass were exposed to a closed, moist atmosphere of
100% relative humidity for 80 h (wet samples) be-

fore being scanned in the DTA. These results were

compared with those from DTA scans of samples
made from as-quenched glass particles of the same

size, that were dried at 120°C for 80 h (dry samples)
and then scanned in the DTA.

3. Results and discussion

DSC/DTA crystallization peaks can be character-
ized by three parameters, the maximum peak height,

(_T)p, the peak full width at half maximum (ATp)

and the peak temperature, Tp. Often attention is

given only to Tp. When properly analyzed as a

function of scan rate, for example, shifts in Tp are
generally believed to provide information about the
activation energy for the transformation [9,10], al-

though the general validity of this technique has

been questioned [3-5]. A decrease in the peak tem-

perature with increased preannealing time has also

been used to explain the observed decrease in the

glass stability due to an increase in the number of

internal nucleation sites resulting from the annealing
treatment. As we will show here and in the compan-

ion paper [6], the additional peak parameters can also

provide important information about nucleation and

growth. Studies of the complete peak profile, for

example, can often reveal features about the mode of

crystallization and the evolving microstructure that

are not manifest in the peak temperature alone. In

this section we present the changes in the peak
profile parameters for the crystallization of lithium

disilicate glass under non-isothermal conditions as a

function of preannealing treatment, particle size and

the density of nucleating agents.

3.1. Non-isothermal nucleation

The solid circles in Fig. 1 show the dependence of

the maximum height of the DTA crystallization peak,

(_T)p on @,, the rate of heating from 400°C and
500°C. As discussed in Section 2, these data were

taken from an ensemble of LS2 glass particles with

an average diameter of 462 [_m; the crystallization

heating rate, @_, was 15°C/rain for all glasses. For

this glass, (_T)p decreases precipitously with in-
creasing ¢b,, up to about 3°C/rain. Little change is

observed for heating rates faster than 3°C/rain. These

DTA results can be explained qualitatively from

previous observations [8] that (t_T)p scales with the
initial number of nuclei in the glass. Glasses heated

more slowly through the nucleation zone will form
more nuclei. Were the nucleation rate at its steady-
state value, the number of nuclei formed would be

inversely proportional to the scan rate. As will be

demonstrated in our companion paper [6], however,

time-dependent nucleation plays a more important

role for these studies; the number of nuclei generated

453 CTime (rain) for Isothermal Nucleation at o
150 7.5 40 20 12 8 5

6 , , ,

[I • Present Experiment
o Isothermal

5
,,..r

zz 4
,..wl

Y.
.<
E- 3

I I ll20 4 8 16

Nucleation Heating Rate, _n (°C/min)

Fig. 1. A comparison between the DTA peak heights for the

crystallization of samples of LS2 glass powders (425-500 i_m

diameter) that were either heated nonisothermally through the

nucleation zone (O) or annealed isothermally at the peak nucle-

ation temperature ((2)). Following this nucleation treatment, all

samples were heated at 15°C/rain through the crystallization

peak.
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then is not so simply related to the scan rate. A

constant value of 8Tp for qJ, > 3°C/rain indicates
that the number of new nuclei generated as a result

of the scan through the nucleation zone is not signifi-

cant compared with those already present in the

as-quenched glass. In those cases, the transformation

proceeds primarily by growth on quenched-in nuclei
and by surface crystallization (which is shown to be

important later). The critical value, _,*, above which

no significant number of new nuclei form in a glass

may have practical significance as a characteristic

property of a glass of a given particle size prepared

under specified conditions. A knowledge of this

value would be useful for designing the proper heat

treatment for that glass to fit specific applications,
where development of nuclei in the glass is either

required or must be suppressed.

The open circles in Fig. 1 show the values of

(ST) e measured previously [8] tk_r the same LS2
glass as a function of isothermal hold time at 453°C

(top axis). This is the experimentally determined

temperature for the maximum nucleation rate in LS2

glass [7,8]. The heating rate used for crystallization

after completion of the isothermal hold at 453°C was

the same (15°C/min) as was used to obtain the data

indicated by the solid circles in Fig. 1. The nucle-

ation times at 453°C scale with q),, producing nearly

identical values of (ST) e in the two cases. This
suggests that the duration of an isothermal anneal at
the peak nucleation temperature required to produce

a result that is identical to a scan experiment can be

calculated simply by computing the time required to

scan between 425°C and 500°C, the range where the

measured steady-state nucleation rate is significant.

This is a surprising result given the strong tempera-

ture dependence of the steady-state nucleation rate
near the peak, although similar behavior has been

assumed on cooling [11,12]. An analysis of the

time-dependent nucleation behavior is required for

an explanation: this is presented in our companion

paper [6]. Briefly, the nucleation rate in the as-

quenched glass is depressed significantly below the

steady-state value [13]. During the DSC/DTA heat-

ing, the nucleation rate rises above the steady-state

value, but at a temperature higher than the peak in
the steady-state nucleation rate [5]. Anneals of longer

duration in the nucleation zone produce a more

complete relaxation to the steady-state cluster distri-

bution with a resulting increase in the nucleation rate

and a smaller displacement of the nucleation peak to

higher temperatures. Taken together, this compli-

cated scenario results in a greater number of nuclei

for slower scans or longer isothermal anneals and
produces the observed DTA results. Therefore, the

validity of the earlier speculation [11,12] has been

justified experimentally in the present investigation

and is explained quantitatively in terms of the time-

dependent nucleation behavior [6]. While these ex-

perimental results provide proof for the predictions

made based on numerical modeling [5], they also

demonstrate that a simple interpretation of DSC /
DTA data to obtain quantitatit_e it_)rmation of the

nucleation rate is not possible. As is discussed in

this paper, however, it remains possible to gain some

qualitative insight into the transformation process,
provided that microstructural information is also in-
cluded in the model.

As is illustrated in Fig. 2, a similar functional
dependence of the DTA peak height on nucleation

heating rate is observed for different crystallization

heating rates, q_. The magnitudes of the values of

(_T)p for each q),,, however, increase with increasing

qb. In this case those 8Tp corresponding to q)_ =
15°C/min are approximately 1.5 × larger than for

q)c = 10°C/min, almost exactly equal to the ratios of

the crystallization heating rates. Since the tempera-

ture difference between the sample and reference pan

r.-

<
[....

4 9,

2

0

i J

• ¢, = 10_'Clmin

O _'c = 15"C/min

-.. ............... _ ...............

h I , I i I J I i I02 4 6 8 1

Nucleation Heating Rate, ¢'n (°C/rain)

12

Fig, 2. DTA peak height for the crystallization of LS2 glass

powders (425-500 _m diameter) as a function of heating race

through the nucleation zone for two different values of crystalliza-

tion scan rate (q{ = 10°C/min and 15°C/rain).
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is proportional m the rate of heat released, which is

in turn proportional to the rate of phase transition,

this proportionality arises because the phase transi-

tion takes place at a higher temperature for the more
rapidly scanned sample. The growth velocity is faster

there and will transform the sample more quickly,

resulting in a faster rate of heat release and a corre-

spondingly larger DSC/DTA signal.
As mentioned earlier, non-isothermal calorimetric

measurements are often analyzed to determine an
effective activation energy, E, for the glass to crystal

transformation. The model most frequently used is

due to Kissinger [10], which relates E to the depen-

dence of the peak temperature, Tp, with the heating
rate, which should be the crystallization heating rate,

_,, in our experiments,

2 E

,n[>l= +co.,,=[<J

R is the gas constant. A plot of ln(T_/q).) versus

1/T r should then yield a straight line with slope
E/R. The use of Eq (1) to determine E has been

criticized [3-5]; it is believed to yield a value of E

that has a little physical significance for transforma-

tions involving both nucleation and growth [5]. It has

been demonstrated both experimentally [14,15] and

theoretically [5], however, that E is approximately

equal to the activation energy for crystal growth over

the range of the DTA peak temperatures, proHded
that the glass sample is saturated with nuclei prior to

crystallization in DTA. In this case, no significant
additional nucleation occurs and the transformation

proceeds by growth only,. This condition can be
achieved (1) by using glass powders of extremely

small particle size (< 50 p,m in diameter), so that

the number of surface nuclei greatly exceeds the

number of volume nuclei formed during the DTA

scan, or (2) by nucleating the glass at the tempera-

ture corresponding to the maximum nucleation rate
lbr a considerable time (e.g., 8-10 h in many glasses)

prior to crystallization in DTA [14,15], ensuring that

relaxation to the steady-state distribution is complete

and that the fraction of new volume nuclei forming

during the scan is inconsequential.

Kissinger plots for the LS2 glass scanned non-iso-

thermally at different heating rates through the nu-

cleation zone are shown in Fig. 3. A range of {_,

13

,-3.
_,?.-
_-_ 12

_=

i i , i --

• _n= 05('/min _j

O • = I O('/min _1_ -

• _ = 20C/rain

O <_ = 60(train

I 1 • @ =ll).0C/min _1_

' ' 1.'11.06 1.08 1.10 2

1000/Tp (K-1)

Fig. 3. Kissinger plot for several values of _lJ,_and cl_. Curves
correspond to q{. - 2.4, 6, 10and 15°C/rain. The probable error
in 1000/Tp is indicated by the error bar: the error in In(Tr"/q_c )
is of order the size of data symbols.

were used; lor each q_,,, q{ = 2, 4, 6, 10 and
15°C/min. All plots are linear, as predicted by Eq.

(1), and are almost indistinguishable, implying that

the activation energy for the transformation is inde-

pendent of qb. The average value of the activation

energy, E = 299-4- 15 kJ/mol, compares well with

the measured activation enthalpy for crystal growth.

Et; = 282 kJ/mol [16]. Based on Fig. 1, the glasses
nucleated at slower heating rates (< 3°C/min) con-

tained a much larger number of nuclei than the

glasses nucleated at rates > 3°C/min. That the acti-

vation energies of transformation are independent of

qb is due to the separation between the peaks in the

nucleation and growth curves for this glass. The

transformation temperature for the glass is well above
the temperature range for which significant nucle-

ation occurs {even taking into account the transient

effects), and no significant number of new nuclei

apparently form during the transformation of the

glass. The calorimetric signal is then dominated by,

crystal growth on the pre-existing fixed number of
nuclei.

The DTA peak width, (AT)p, defined as the
width of the DTA crystallization peak at half-maxi-

mum, is predicted to be a qualitative measure for the

dimensionality of the transformation, n, [17],

n=2.5R _ . (2)
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Fig. 4. DTA and DSC peak temperatures for the crystallization of

LS2 glass powders (425 500 txm diameter) as a function of
heating rate through the nucleation zone fi_r two difle'rent values

of crystallization scan rate (q_ = 10°C/rain and 15°C/min).

6O

45

i--r

30

15-

0 12

. _7 • ¢'=10"C/min
A._

o Oc=l 5"C/min

i / i I i I ,

3 6 9

Nucleation Heating Rate, On ("C/min)

Fig. 5. DTA peak half-width tbr the crystallizatkm of LS2 glass

powders (425-500 Ixm diameter) as a function of heating rate
through the nucleation zone for two different values of crystalliza

tion scan rate (q_ = 10°C/rain and 15°C/rnin).

A value of n close to 3 suggests bulk or three

dimensional crystal growth and a value close to I is

consistent with surface growth. Intermediate values

of n between I and 3 might result if both surface and

internal crystallization were occurring. Such argu-

ments should, of course, be taken only as suggestive;

more complicated reactions might mimic the pre-

dicted behavior. Quantitative models of the phase

transition should always be supported by direct mi-

croscopic investigations of the transformation mi-

crostructure, as was done here (cf. Fig. 7). In this

relatively simple case of a known polymorphically

crystallizing glass, however, Eq. (2) can be used to

assess the relative importance of the surface versus

volume contribution to the phase transformation,

provided that the temperature dependence of E is

small.

In Fig. 4. the DTA crystallization peak tempera-

ture, Tw is shown as a function of _, for two

different crystallization scan rates, _.= 10 and

15°C/min, for the LS2 glass. For comparison, DSC

data taken at qb = 15°C/rain are also shown. It is

interesting to note that unlike AT r, the DTA data for

TI, show a less dramatic change with qb although

the changes are small, even for the DSC data. This

may reflect a difference in sensitivity between the

DTA and DSC or could indicate less surface nucle-

ation and growth resulting from the superior sample

atmosphere in the DSC, which has been improved

over that of the commercial instrument. As will be

demonstrated in the companion paper [6], computer

calculations are in better agreement with the DSC

data. Taking Tp to be a weak function of _, for the

same _, since E for this glass is also independent

of @_, Eq. (2) predicts that the dependence of n on

qb0 should be inversely related to that of ATI, on _.

The measured values of ATp and the corresponding

values of n calculated from Eq. (2) are shown as a

function of qb for qs. = t0 and 15°C/rain in Fig. 5

and Fig. 6, respectively. These show that for a

3

,,.o"

e_

2

<

q.-,

i i i

_. • Oc=I O°C/min
o ,o O=15 C/ram

I I I

0 3 6 9 12

Nucleation Heating Rate, On (C/min)

Fig. 6. Effective Avrami coefficient, n, for the crystallization of

LS2 glass powders (425-500 _xm diameter) as a function of
heating rate through the nucleation zone tor two different values

of crystallization scan rate (qb = t0°C/mm and 15'_C/min).
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particular _b, __Tp increases and n decreases with
increasing @. up to 3°C/rain, suggesting a reduced
dimensionality t`or crystal growth. As will be shown.
this is due to the dominance of surface over volume

growth. For values of @._ greater than 3°C/rain,

both 3,T_ and I1 are independent of q).; n is close to
1 indicating the increased importance of surface

crystallization. The functional form of _Tp and n

with 49. is the same as that found for the DTA peak

height. (ST)p (Fig. 1). although the direction of
change is opposite for .XTp. The same general con-
clusions, namely, the formation of internal nuclei at

sufficiently slow heating rates and the existence of a

critical heating rate (3°C/rain) above which no sig-
nificant number of new nuclei form in the LS2 glass

can therefore be interred. The value of n at each qb,

is higher ['or higher _. (compare ,t for q{ = 10 and

15°C/min in Fig. 6), which is, again, probably
because a higher 05 pushes the transformation to a

higher temperature, where the growth rate is larger,

increasing the importance of the volume transforma-
tion.

As is illustrated in Fig. 7, the importance of

surface crystallization can be observed directly from

a study of the crystallization microstructure. Fig. 7(a)

shows an optical micrograph of a portion of an LS2

glass that has been crystallized at 675°C for 2 h.

Here, surface crystallization is dominant, observed as

a shell growing radially from the surface. This and

the primarily amorphous region in the upper part of

Fig. 7(a) indicates a much larger surface nucleation
rate than a volume nucleation rate. Fig. 7(b) shows

an optical micrograph of a LS2 glass containing

0.005 wt% Pt that has been crystallized under the
same conditions. The thinner surface crystal layer

and the fine grain size in the volume of the sample

reflect the larger heterogeneous nucleation rate on

the Pt particles. As discussed, the results from the
DTA measurements are consistent with these SEM

studies.

3.2. Effect qfglaw" particle size and nucleating age_ ts

The DTA peak heights, 8Tp, measured at

15°C/min for 40 mg samples of as-quenched LS2

glass are shown as a function of the size of the glass

particles in Fig. 8 The decrease in 8Tp with increas-
ing particle size suggests that small particles of

(a)

q00

(b)

10"d'Tm' ':i
Fig. 7. Optical micrographs of partially cDstallized LS2 glass

showing (a) primarily surface crystallization in undoped glasses

and (b) primarily volume cDstallization in glasses doped with Pt.

as-quenched, non-nucleated LS2 glass crystallize pri-
marily by surface crystallization. The number of

internal nuclei should scale approximately with the

..d

em
'_ 6

ea

g.
< 4

I I I

300 600 900

Particle size (lam)

200

Fig. 8. DTA peak height for the cDstallization of LS2 glass as a

function of particle size. A constant heating rate of 15_C/min was

used.
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volume of the particle. Based on the experience that

8To is proportional to the number of nuclei [8], then,
no change should be observed as a function of

particle size (for the same scan conditions and the

same mass of sample), if the transformation proceed

only by internal nucleation and growth (assuming the

absence of finite particle size effects which are dis-
cussed in Ref. [6]). The surface to volume ratio

increases with decreasing particle size, however. For

the same sample mass, an ensemble of smaller parti-
cles will contain considerably more surface area, and

therefore an increasing number of surface nuclei

with decreasing particle size, leading to the observed

functional dependence.

To further investigate the competition between

surface and volume crystallization in this LS2 glass,

these measurements were repeated for LS2 glasses
containing 0.001 and 0.005 wt% platinum added as a

heterogeneous nucleating agent. Platinum-nucleated

glasses are expected to crystallize primarily by inter-

nal nucleation and growth. The Pt particles catalyze

the nucleation of the crystalline phase+ dramatically
increasing the nucleation rate. This causes the Pt-

doped glasses to show a larger DTA peak height

upon crystallization from the same sample amounts
used for the undoped glass (40 mg), making the

temperature of the DTA furnace unstable. For exam-

ple, a 40 nTg sample of the LS2 glass composed of

462 btm average size particles and containing 0.005

w'tS_ Pt gave a DTA peak height that was larger than

40°C when scanned at 15°C/rain. The sample weight
was adjusted therefore according to platinum content

so that the DTA peak height should not exceed 8 to

10°C when the glass composed of 462 _m particles

was scanned at 15°C/rain. This amount of glass was
then maintained constant lot the measurements on

other particle sizes. The weights used were approxi-
mately 15 mg for the 0.005 wt% Pt-doped glass and

20 mg for the 0.001 wtC/f Pt-doped ones.

A direct comparison of 8Tp among glasses was
difficult since the magnitude of 8Tp is a function of
the amount and the dopant level of the glass. A

reduced peak height, 8Tp_ was therefore used:

6 Tp for a particular particle size

671_ = _ST_,for the smallest particle size used ' (3)

Here, the smallest particles were of order 35 I.tm in

size. The reduced peak height maintains the same

2.5

2.0 ""_ ...................

• Undoped

[...e-. 1.5 _' o 0.001 wt,q PI

,' A 0.005 ',vt'/c PIj I

,_, ..... ___
,..¢ .............. O-

0.5 ...... " - ................ ,_

' 6(')0 '0 300 900 1200

Particle size (lam)

Fig. _). Reduced DTA peak height for the crystallization of I.$2

glass as a function of particle size for three different Pt dopant

levels. A constant heating rate of 15'°C/rain was used.

functional trend as the original peak height with

particle size, but makes possible a direct comparison
between results tot differently doped glasses, it is

important to emphasize that the magnitude of 8T r is
also a function of Pt doping; this is factored out

when Eq. (3) is used to plot the data sets for different
doping levels.

The particle size dependence of 8Tp_ lbr the
undoped LS2 glass and for glasses containing 0.001

and 0.005 wt% Pt are compared in Fig. 9. Following

Eq. (3), all values of 8Tp are normalized to the value

of 8Tp for the 35 la,m diameter particles. These
results indicate a competition between surface and

internal nucleation and growth. Internal, or bulk,

crystallization is dominant in the Pt-doped glasses,

especially, for the glass containing 0.005 wt% Pt.

There 8Tp_ increases with increasing particle size as

opposed to the decreases observed in the undoped

glass. For the glass containing 0.001 wt% Pt, 8Tpu
remains nearly unchanged with increasing particle

size. In this case as the particle size increases the

decrease in 8Tp_, corresponding to a decrease in the

surface crystallization, is nearly counterbahmced by

the increase owing to the increasing internal crystal-

lization due to platinum. These conclusions are sup-
ported by results obtained from computer simula-

tions studies as a function of Pt impurities, which are

presented in our companion paper [6].

For all doped and undoped glasses, the crystalliza-

tion peak temperature, lp, increased with increasing
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Fig. 10. DTA peak temperature for the crystallization of LS2 glass

as a funclion of particle size for three different Pl dopant lexels. A

constant heating rate of 15:C/rain was used,

particle size (Fig. 10). Fig. l0 also shows that for

any particle size, Tp decreases with increasing con-
centration of platinum in the glass, reflecting a lower

stability against crystallization with increasing dopant
level. Since all glasses have a similar behavior,

however, the dependence of Tp on particle size,
cannot readily provide information on the nature of

the crystallization mechanism, i.e., whether it is sur-
face or internal.

Although these changes in peak temperature as a

function of particle size and Pt doping level might

appear to be in contradiction with the results pre-

sented in Fig. 4, this simply reflects the simultaneous
surface and volume crystallization. For small parti-

cles of undoped glasses, surface crystallization is the

dominant mechanism (Fig. 7), quickly transforming

the particles. The crystallization time at a given

temperature increases with increasing particle size,
however, due to the increasing importance of volume

crystallization. As shown by the data in Fig. 10, [or a
non-isothermal scan, this has the effect of displacing

the peaks to higher temperature, where the transfor-
mation rate is faster. All of the data in Fig. 4 were

taken from large particles, 425-500 _m in diameter,

where volume crystallization is the dominant mecha-
nism. The small changes in peak temperature with

heating rate through the nucleation zone simply indi-

cate that the change in the number of nuclei induced

by the non-isothermal annealing was small. Corre-

spondingly, the increased nucleation rate with Pt
doping increases the volume transformation rate, thus

lowering the transformation temperature. That a

larger change in the peak temperature is observed for

particles of similar size with Pt doping than with
non-isothermal annealing in the nucleation zone sim-

ply reflects the high number and catalytic efficiency
of the Pt impurities. That the change in peak temper-

ature with particle size is less for the more heavily

doped glasses reflects the increased volume transfof
mation rate, now comparable with the surface crys-

tallization rate (Fig. 7b).

As was discussed in Section 3.1, like 8Tp the

peak half width, ATp, and the crystal growth dimen-
sion. n, can also be used to predict whether a glass

transforms predominantly by surface or internal crys-

tallization. From Eq. (2), n is a function of Tp, ATp,
and the activation energy for crystallization, E. Both

Tp and ATp change with particle size and also with
the platinum content in the glass. It is difficult, then.

to estimate the particle size and Pt-doping depen-

dence of n solely fl'om that of ATp. Rather, the

dependence of n should follow that of Tv2/ATp:

since E is approximately equal to the activation

energy' for growth, it should be relatively indepen-
dent of particle size and Pt-doping. The parameter

[T_/ATp] can therefore be used to identif_ surface or
bulk crystallization. Values of T_/ATp were calcu-

lated from the measured values of Tp and ATp. For a
better comparison among the Pt-doped and undoped

glasses, they were reduced in the same way as lk)r

BTp, i.e.,

[T_] R T_/ATp for a particular particle size

[AYpJ TI(/A T p for the smallest particle size used

(4)

Fig. 11 shows the plots of [T_/ATp] _ as a function
of particle sire for all of the doped and undoped LS2

glasses. The functional dependence with particle size

resembles closely that of the reduced 8Tp, 8Tfff (Fig.

9). Thus, like aT if, [TI_/ATp]R also indicates that
surface crystallization dominates in the undoped LS2

glass, while internal crystallization becomes domi-

nant in the Pt-doped glasses (see Fig. 7).
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Fig. II. Reduced parameter (T_/_T v) [k)r the crystallization of

LS2 glass as a function of particle size for three different Pt

dopant levels, A constant heating rate of 15°C/min was used.

3.3. Eft'cots of water content

As was discussed in Section 2, this investigation

was extended further by deliberately changing the

surface characteristics of the glass particles, exposing

some samples to a moist atmosphere (wet samples)

and annealing others in a dry environment (dry
samples). Samples were subsequently scanned at

15°C/min in the DTA. Fig. 12 compares values of

_Tp, from 40 mg of the wet and dry samples as a
function of particle size. Clearly, the effect of sur-

face crystallization on 8Tp is larger in the wet sam-

12
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.J
e-,
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,, 6
<
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_ 4

i i i

• Dry.
', 0 Wet

• Desiccated

I

0 125
I I

250 375 500

Particle size (lam)

Fig. 12. I)TA peak height lk_r the crystallization of LS2 glass as a

function of particle size lor glasses exposed to atmospheres of

different water content. All particles were heated at a constant rate

of 15 'C/rain.
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Fig. 13. DTA peak temperature for the crystallization of LS2 glass

as a function of particle size for glasses exposed to atmospheres of

different water content. All particles were heated at a constant rate

of lY_C/min.

pies, Further, the effect is greater for the smaller

particles, where the surface to volume ratio is larger.
These results are consistent with the known effect

that water increases the atomic mobility in LS2 glass

[18,19]. The surface growth rate will be increased up
to the point corresponding to the diffusion depth of
the water. Since this distance is the same for the

smaller and larger particles, the surface crystalliza-

tion will be accelerated proportionally more for the

smaller particles. For comparison, the dependence of

_T v on particle size for the glass stored in a vacuum
desiccator (solid triangles) is also shown. The cnrve

lot the glass stored in the vacuum desiccator is very
close to that for the dry glass, indicating that as

expected, storing in a vacuum desiccator keeps this

glass reasonably dry.

As for the glasses doped with platinum, the de-

pendence of To on particle size for the wet and dry

glasses fails to provide any information concerning

the dominant crystallization mechanism (Fig. 13).

The values of To for the wet and dry glasses are
nearly indistinguishable. They increase with increas-

ing particle size indicating only an increased resis-

tance to crystallization as the particle size increases.

On the other hand, T_/,_T_, for the wet and dry
glasses shows a functional dependence (Fig. 14)

similar to that of _Tv (Fig. 12), and is considered to

be a more useful parameter for understanding the
crystallization mechanism in glasses. Since hydrating
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LS2 glass as a function of parlicle size for glasses exposed to

atmospheres of difDrent water content. A constant heating rate of

15°C/rain was used.

is known to change the growth rate in these glasses,

E is likely not constant, making interpretations of the

translbrmation mechanism using Eq. (2) difficult.

DTA experiments also provide a convenient, fast,

method for examining the relative importance of
surface or internal crystallization. Based on DTA and

microscopy experiments, it has been shown in the

present investigation that lithium disilicate glasses

crystallize primarily by surface crystallization. The

importance of surface crystallization can be en-

hanced by the deliberate exposure of the glass parti-
cles to a moist atmosphere. Internal nucleation can

be enhanced by the introduction of nucleating agents,
such as Pt particles. When the glass is doped with

platinum, internal crystallization appears to dominate

over surface crystallization as the platinum concen-

tration exceeds 0.001 wt% in this LS2 glass.

Finally, we have made the first systematic studies

of the effects of particle size on the crystallization

behavior. Most of these effects appear to be ex-
plained by the relative importance of surface versus

internal crystallization. A computer model that al-

lows a realistic analysis of these non-isothermal DTA

data and an exploration of finite size effects is

presented in a companion paper [6].

4. Conclusions

In summary, we have demonstrated that glasses
heated through a temperature range where there is

significant nucleation can develop widely different

numbers of nucleated clusters. As expected, the nu-

clei concentration increases with a decreasing heat-

ing rate. This must be taken into account during
glass processing since samples subjected to different

heating rates may have widely different character-
istics. We have also shown that non-isothermal DTA

experiments can be used to study these effects. Based

on studies of one glass, there is a characteristic

critical heating rate, ¢Pn*, above which no significant
nucleation occurs; this is an expected result from

steady-state nucleation considerations. This value will

be different for different glasses and different parti-

cle sizes; for the 462 p,m diameter particles of

lithium disilicate glass studied, ¢P_*= 3°C/min. We

have argued that transient effects are important for a
quantitative understanding of the effects of isother-

mal and non-isothermal annealing treatments on

DSC/DTA transformation behavior. This will be

demonstrated more fully in the companion paper [6].
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